
myFitter Manual
for version 0.2, 28 June 2013

Martin Wiebusch (martin.wiebusch@kit.edu)

mailto:martin.wiebusch@kit.edu

This manual is for myFitter (version 0.2, 28 June 2013), a C++ class library for maximum
likelihood fits and numerical computation of p-values.

Copyright c© 2012 Martin Wiebusch.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

i

Table of Contents

1 Getting Started . 1
1.1 Requirements . 1
1.2 Installation . 1
1.3 Compiling the Example . 2

2 Implementing Models . 3
2.1 The Model Base Class . 3
2.2 Writing your own Model Class . 6

3 Fitting a Model . 10
3.1 Specifying Experimental Inputs . 10
3.2 Non-linear Constraints . 12
3.3 Minimising the chi-square Function . 13
3.4 Finding the Right Starting Point . 15

4 Calculating p-values . 17
4.1 Methods for Computing p-values . 17
4.2 Options for p-value Computations . 18
4.3 Parallel Computation . 20

Appendix A GNU Free Documentation License
. 21

Chapter 1: Getting Started 1

1 Getting Started

The concepts and algorithms implemented in myFitter are described in

M. Wiebusch, “Numerical Computation of p-values with myFitter,” Comput.
Phys. Commun. (2013), DOI: 10.1016/j.cpc.2013.06.008, [arXiv:1207.1446v2]

If you use the myFitter package for a scientific publication, please cite this paper. In
addition, please follow the citation guidelines of the Dvegas package, which myFitter links
to.

1.1 Requirements

The myFitter source code can be obtained from http://myfitter.hepforge.org (but
since you’re reading this, you probably got there already). To compile it, you need

• a standard-compliant C++ compiler like the GNU compiler,

• the GNU Scientific Library version 1.13 or later,

• the Boost C++ Libraries version 1.40 or later and

• the Dvegas library version 2.0.2 or later.

1.2 Installation

The myFitter package uses the standard GNU build system and pkg-config to keep track
of the various flags you need to link your own programs to myFitter. To install the package,
unpack the tarball with

tar -zxvf myfitter-x.y.tar.gz

(x.y being the version of the package). If you have root access on your system you can
simply install the package with

cd myfitter-x.y

./configure

make

make install

This will put all the headers, library, documentation and ‘pkg-config’ files in
standard directories (usually ‘/usr/local/include/myfitter’, ‘/usr/local/lib’,
‘/usr/local/share/info’ and ‘/usr/local/lib/pkgconfig’) where your compiler and
other tools will automatically find them. You only need root access for the last command.

If you don’t have the root password or don’t want to install the package system-wide,
you can run

cd myfitter-x.y

./configure --prefix=myprefix

make

make install

where myprefix is some directory you have write access to. This will put the headers
in ‘myprefix/include/myfitter’, the library in ‘myprefix/lib’, the documentation in
‘myprefix/share/info’ and the pkg-config file in ‘myprefix/lib/pkgconfig’. If you use
pkg-config when compiling your own programs, you only have to make sure that pkg-

config finds the file ‘myFitter.pc’ in ‘myprefix/lib/pkgconfig’. You can do this by
setting the environment variable PKG_CONFIG_PATH. In bash, simply call

http://dx.doi.org/10.1016/j.cpc.2013.06.008
http://arxiv.org/abs/1207.1446v2
http://dvegas.hepforge.org
http://myfitter.hepforge.org
http://gcc.gnu.org/
http://www.gnu.org/software/gsl/
http://www.boost.org/
http://dvegas.hepforge.org

Chapter 1: Getting Started 2

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:myprefix/lib/pkgconfig

You may want to add this line to your ‘~/.bashrc’.

If you want to be thorough, you can also run the unit tests for the package. To do
this, simply call make check in the myFitter source directory. These tests involve a few
numerical integrations and may take a couple of minutes, so feel free to grab a cup of coffee
while they run. If anything goes wrong with the tests please let the authors know about it.

You can also generate the documentation in some formats other than ‘.info’ files.
Try running make html or make pdf in the myFitter source directory and then look at
‘doc/myFitter.html’ or ‘doc/myFitter.pdf’.

1.3 Compiling the Example

When everything is installed properly, copy the contents of ‘doc/examples’ to some other
directory and run

g++ -o linear_example linear_example.cpp $(pkg-config --cflags --libs myFitter)

If you don’t use the GNU compiler (but why wouldn’t you?) replace g++ by whatever
your compiler is called. The command pkg-config --cflags --libs myFitter prints out
the flags needed to link your program to myFitter, and the $() construct substitutes the
output on the command line. When you write bigger programs you’ll want to do compiling
and linking in two steps. Then use pkg-config --cflags myFitter for compilation and
pkg-config --libs myFitter for linking.

If everything worked, you now have an executable called ‘linear_example’ in your
working directory. Try to run it. It fits a simple model to some data and computes the
p-value in two different ways. It takes a couple of minutes to run. To get a first idea of
how to implement your own models and do your own fits, have a look at the source files
‘linear_example.cpp’ and ‘linearmodel.hpp’. They have lots of comments that explain
what’s going on.

Chapter 2: Implementing Models 3

2 Implementing Models

All models in myFitter are represented by classes derived from the base class
myfitter::Model defined in ‘myfitter/model.hpp’. Note that all classes of the myFitter
library live in the namespace myfitter. To implement your own model, you have to write
your own derived class. An example can be found in ‘doc/examples/linearmodel.hpp’ in
the source distribution.

2.1 The Model Base Class

The Model class provides the following functionality:

Constructors
The Model provides a copy constructor and an assignment operator, but no
default constructor. The default constructors of derived classes should call the
constructor

Model(int npar, int nobs)

which initialises a model with npar parameters and nobs observables. The
values of the parameters and observables as well as their scales and upper and
lower limits (see below) are initialised to NaN. This way, if you forget to initialise
a parameter correctly, you will probably notice it.

Parameters
An object of type Model stores the “current” values of the parameters of the
model. The number of parameters is fixed in the constructor and returned by
the function nparameters(). Parameter values can be read out and set with
the methods

double parameter(int ipar)

const ParameterVector& parameters()

void parameter(int ipar, double value)

where the parameter index ipar runs from zero to nparameters()-1. The type
ParameterVector is a synonym for boost::numeric::ublas::vector<double>.
You can find more information about uBLAS vectors in the documentation of
the Boost uBLAS library.

Observables
A Model object stores the “current” values of the observables. The num-
ber of observables is fixed in the constructor and returned by the function
nobservables(). The values of the observables can be accessed with the meth-
ods

double observable(int iobs)

const ObservableVector& observables()

where the index iobs runs from zero to nobservables()-1. The type
ObservableVector is another synonym for boost::numeric::ublas::vector<double>.

Scales of Parameters
You can read and set the scale of each parameter with

http://www.boost.org/

Chapter 2: Implementing Models 4

double scale(int ipar)

void scale(int ipar, double value)

For all internal computations, parameters are normalised to their scale. In par-
ticular, the chi-square function is not minimized with respect to the parameters
pi set by the user via Model::parameter, but with respect to pi/si, where si
are the scales of the parameters. Ideally, the scales of the parameters should
be chosen so that the second derivative of the chi-square function with respect
to pi at the minimum is of the same order as si. In other words, they should
be your best guess for the errors of the parameters when fitting the model to
data. You can set the value and scale of a parameter in one go with

void parameter(int ipar, double value, double scale)

Bounded Parameters
You can set the ranges in which parameters are allowed to float with

void upper_limit(int ipar, double value)

void lower_limit(int ipar, double value)

void set_range(int ipar, double upper_lim, double lower_lim)

and obtain the current upper and lower limit of a parameter with

double upper_limit(int ipar)

double lower_limit(int ipar)

Initially, all parameters are unbounded. In this case, the two functions above
return NaN. Conversely, you can remove an upper or lower limit on a parameter
by setting the limit to NaN. To do this, you should use the static method

static double Model::nan()

which just returns NaN. To check if a certain parameter currently has an upper
or lower limit you can use the methods

bool has_upper_limit(int ipar)

bool has_lower_limit(int ipar)

You can set the value, scale, lower and upper limit of a parameter in one go
with

void parameter(int ipar, double value, double scale,

double lower_limit, double lower_limit)

Fixing Parameters
You can fix a parameter to its current value or release it with the methods

void fix(int ipar)

void release(int ipar)

A fixed parameter does not float in a fit. To check if a parameter is currently
fixed, use the method

bool fixed(int ipar)

Calculating Derivatives
The derivatives at the current point in parameter space can be calculated with

virtual int calc_deriv()

which returns zero if the calculation was successful and a non-zero value other-
wise. The derivative matrix can be accessed with the method

Chapter 2: Implementing Models 5

const Matrix& derivatives()

The type Matrix is a synonym for boost::numeric::ublas::matrix<double>.
You can find more information about uBLAS matrices in the documentation
of the Boost uBLAS library. To access the elements of a Matrix object,
just call the object with two integer arguments. For the matrix returned by
derivatives(), the first index is a parameter index and the second an observ-
able index.

The derivatives are calculated numerically by varying the parameters by small
amounts proportional to their scale (as returned by scale(ipar)). The pro-
portionality factor can be read and modified with the methods

double derivative_epsilon()

void derivative_epsilon(double value)

Derived classes may overload the calc_deriv() method, for example to imple-
ment analytical formulae for the derivatives with respect to some parameters.
Your own implementation should assign the values of the derivatives to the
protected member derivatives_, which is of type Matrix. If you do not want
to implement all derivatives yourself the derivatives with respect to a certain
parameter ipar can be be calculated numerically with the protected method

int numerical_derivative_(int ipar)

This method fills the corresponding row of derivatives_ and returns zero
on success and a non-zero value on failure. Finally, you can check your own
implementation of derivatives with the method

bool check_derivatives(double rel_prec, double abs_prec)

This method checks if your results for the derivatives agree with the numerical
derivatives with a relative precision rel prec. Any derivatives which are smaller
than abs prec in magnitude are regarded as exactly zero.

The smallrange Flags
You can read and set the smallrange flag for each parameter with the methods

bool smallrange(int ipar)

void smallrange(int ipar, bool value)

When the smallrange flag is set, the parameter is considered fixed for the pur-
pose of determining the model’s hyperplane before a p-value integration (see
[arXiv:1207.1446v2] for details), but floats in any fits performed during the p-
value integration. The right combination of smallrange flags can significantly
increase the efficiency of p-value integrations. The flag should be set if a pa-
rameter is only allowed to vary in a small range or if the dependence of all
observables on that parameter is very weak.

Sampling the Parameter Space
You can randomly sample the parameter space and build up a dictionary of
parameter values and the corresponding observable values. This dictionary can
then be used by the fit functions to find good starting points for minimising the
chi-square. The ranges in which the parameters are scanned can be read with
the methods

http://www.boost.org/
http://arxiv.org/abs/1207.1446v2

Chapter 2: Implementing Models 6

double scan_min(int ipar)

double scan_max(int ipar)

and set with

void scan_min(int ipar, double value)

void scan_max(int ipar, double value)

void scan_range(int ipar, double min_val, double max_val)

If you are lazy you can also set the scan ranges of all parameters at once with

void set_scan_ranges(double factor)

which sets the scan range of each parameter i to the interval from
parameter(i)-factor*scale(i) to parameter(i)+factor*scale(i). To
sample the parameter space with n points, call

void scan(int n)

If you want more sample points in a specific part of the parameter space you
can change the scan ranges and call scan() again. The old data will be kept.
To clear the dictionary, call

void clear()

Chi-square values and constraint penalty
Each Model object stores a chi-square value which can be accessed with the
methods

double chisquare()

void chisquare(double chisq)

When you fit your model to some data using the Fitter::global_fit or
Fitter::local_fit methods (see Section 3.3 [Minimising the chi-square Func-
tion], page 13) they will set the chisquare member of your Model object to
the minimum chi-square value found in the fit. Usually you should not have to
modify the chisquare member yourself.

Non-linear constraints on your model’s parameter space are handled inmyFitter
by adding penalty terms to the chi-square function which become large when
the constraints are violated (see Section 3.2 [Non-linear Constraints], page 12).
After calling Fitter::global_fit or Fitter::local_fit the contribution of
these penalty terms is stored in the constraint_penalty member of the Model
class:

double constraint_penalty()

void constraint_penalty(double p)

As with the chisquare member, you will usually not have to modify the
constraint_penalty member yourself. The value stored in the chisquare

member never includes the contribution from the penalty terms.

2.2 Writing your own Model Class

The only thing the Model class does not do for you is calculating the observables for given
values of the parameters. Derived classes must implement this by overloading the virtual
method

Chapter 2: Implementing Models 7

virtual int calc()

This method should use the current values of the parameters, as returned by
Model::parameter(int i), compute the observables and assign them to the elements of
the protected member

ObservableVector observables_

The type ObservableVector is a synonym for boost::numeric::ublas::vector<double>
and documented in the Boost uBLAS library. For most purposes, you only need to know
that the elements of observables_ can be accessed like those of a normal C array or
std::vector<double>, i.e. with observables_[i]. The calc()method should return zero
when the computation was successful and a non-zero value otherwise. To avoid computing
the observables repeatedly with the same parameter values, the Model class has a protected
boolean member

bool needs_update_

which is set to true whenever a parameter value is changed. You can check the value
of needs_update_ at the start of your calc() implementation and you should set it to
false after a successful computation of the observables. The default implementation of
Model::calc() only sets needs_update_ to false and returns zero.

When you write your own Model classes, you should observe few guidelines which will
make your life easier in the long run. A typical declaration of a model class will look like
this:

#include <myfitter/model.hpp>

using namespace myfitter;

class MyModel : public Model {

private:

...

protected:

MyModel(int npar, int nobs) : Model(npar, nobs) { ... }

...

public:

// parameters

enum {P_FIRSTPAR, P_SECONDPAR, ... , P_LASTPAR};

static const int NPAR = P_LASTPAR+1;

// observables

enum {O_FIRSTOBS, O_SECONDOBS, ... , O_LASTOBS};

static const int NOBS = P_LASTOBS+1;

// constructors

MyModel() : Model(NPAR, NOBS) { ... }

MyModel(const MyModel& m) : Model(m) { ... }

// assignment operator

http://www.boost.org/

Chapter 2: Implementing Models 8

virtual const MyModel& operator=(const MyModel& m) {

Model::operator=(m);

...

return *this;

}

...

virtual int calc();

};

First of all, note that parameters and observables are identified in myFitter by integer
numbers starting from zero. Since you probably don’t want to remember the integer as-
signments for all parameters and observables in all your models, you should define enum

types that give intuitive names to the integers associated with your parameters and observ-
ables. As the assignments are specific to each model class, you should make the enum types
members of the corresponding model class. Using prefixes ‘P_’ and ‘O_’ for the names of
parameters and observables, respectively, will avoid name clashes in cases where a param-
eter is at the same time an observable. In addition, each model class should define static
integer constants NPAR and NOBS which keep information about the number of parameters
and observables defined in that model.

It is also a good idea to define a default constructor, a copy constructor and a virtual
assignment operator for your model. This will allow you to save and restore the state of a
model object in a single line. Furthermore, you should re-define the constructor with the
two integer arguments from the Model class as a protected constructor. This will allow you
to write derived classes of MyModel with additional parameters or observables. This is how
the declaration of a derived class could look like:

class MyOtherModel : public MyModel {

private:

...

protected:

MyOtherModel(int npar, int nobs) : MyModel(npar, nobs) { ... }

...

public:

// parameters

enum {P_FIRSTNEWPAR=MyModel::NPAR, ... , P_LASTNEWPAR};

static const int NPAR = P_LASTNEWPAR+1;

// observables

enum {O_FIRSTNEWOBS=MyModel::NOBS, ... , O_LASTNEWOBS};

static const int NOBS = P_LASTNEWOBS+1;

// constructors

MyOtherModel() : MyModel(NPAR, NOBS) { ... }

MyOtherModel(const MyOtherModel& m) : MyModel(m) { ... }

Chapter 2: Implementing Models 9

// assignment operator

virtual const MyOtherModel& operator=(const MyOtherModel& m) {

MyModel::operator=(m);

...

return *this;

}

...

virtual int calc() {

int status;

if((status = MyModel::calc())) return status;

// calculate new observables

...

}

};

Note that the definitions for NPAR and NOBS in MyOtherModel shadow the ones in
MyModel.

Chapter 3: Fitting a Model 10

3 Fitting a Model

To fit a given model you first have to specify the experimental inputs for your fit and then
determine the best-fit parameters by minimising the chi-square function. Both can be done
with the myfitter::Fitter class, which is declared in ‘myfitter/fitter.hpp’.

3.1 Specifying Experimental Inputs

To fit a model to some data you first have to instantiate the myfitter::Fitter class,
which is declared in ‘myfitter/fitter.hpp’. Each Fitter object contains an object of
type myfitter::InputFunction (defined in ‘myfitter/inputfunction.hpp’), which can
be accessed through the method

InputFunction& Fitter::input_function()

The experimental inputs are specified by adding objects of type InputComponent to the
input_function() member of the Fitter class. This is done with the method

int InputFunction::add(const InputComponent&)

The return value does (currently) not serve any purpose. An object of type
InputComponent represents a term in the input function D (see [arXiv:1207.1446v2] for
details) and stores default values for the measured observables (x0 in the notation of
[arXiv:1207.1446v2]). The most common types of input components are defined in the
header ‘myfitter/inputcomponents.hpp’. Here is an example:

#include <myfitter/fitter.hpp>

#include <myfitter/inputcomponents.hpp>

using namespace myfitter;

...

int main()

{

MyModel mymodel;

// initialise mymodel

...

Fitter fitter(MyModel::NOBS);

fitter.input_function().add(

GaussianIC(MyModel::O_MYSECONDOBS, 3.0, 1.2, 0.4, 0.6));

...

The constructor of the Fitter class takes an integer value as argument, which specifies
the number of observables. Only models which provide that exact number of observables (as
returned by Model::nobservables()) can be fitted with the created Fitter object. The
last line adds a Gaussian contribution with systematic errors to the input function. Specif-
ically, it states that the observables associated with the index MyModel::O_MYSECONDOBS

(see [MyModel example], page 7) has a measured value of 3.0 with a Gaussian statistical error
of 1.2 and systematic errors of +0.4 and −0.6. In a scientific text, this might be written
as 3.0 ± 1.2 (stat.) +0.4

−0.6 (syst.). When you perform the actual fit you can still change the

http://arxiv.org/abs/1207.1446v2
http://arxiv.org/abs/1207.1446v2

Chapter 3: Fitting a Model 11

central values of the observables. The methods Fitter::local_fit and Fitter::global_

fit (see Section 3.3 [Minimising the chi-square Function], page 13) have optional arguments
which let you override the default values stored in the input_function() member. How-
ever, the (different types of) errors can only be specified by passing correctly initialised
InputComponent objects to the InputFunction::add method.

The same observable may contribute to several terms in the input function. For instance,
following the last line of the previous example, you may add a second gaussian input for
O_MYSECONDOBS:

fitter.input_function().add(

GaussianIC(MyModel::O_MYSECONDOBS, 10.0, 0.1, 0.02, 0.03));

The contributions of the two terms to the input function will simply be added. However,
the InputFunction object allows only one central value for each observable. The line
above will therefore replace the previous central value of 3.0 with 10.0, so that the gaussian
contributions from both terms will be computed with a central value of 10.0. Generally, you
should avoid adding multiple gaussian input components for the same observable to your
input function. If you have several measurements for the same observable you should instead
combine the central values and errors correctly and only add one input component for the
combination. However, for non-gaussian inputs or non-linear constraints (see Section 3.2
[Non-linear Constraints], page 12) this combination is not necessarily possible and it is for
this reason only that myFitter allows multiple inputs for the same observable.

The header ‘myfitter/inputcomponents.hpp’ provides the following subclasses of
InputComponent:

GaussianIC

This represents a single observable with a Gaussian error and (possibly) sys-
tematic errors. The constructor

GaussianIC(int iobs, double value, double error,

double syst_plus=0., double syst_minus=0.)

creates an input component for observable iobs with central value value, Gaus-
sian error error and systematic errors syst plus and syst minus. The values of
error, syst plus and syst minus should all be positive. If the last two arguments
are omitted, the default value 0 is used.

AsymmetricGaussianIC

This represents a single observable with asymmetric Gaussian errors and (pos-
sibly) systematic errors. The constructor

AsymmetricGaussianIC(int iobs, double value,

double error_plus, double error_minus,

double syst_plus=0.,

double syst_minus=0.)

creates an input component for observable iobs with central value value,
asymmetric Gaussian errors error plus and error minus and systematic errors
syst plus and syst minus. The values of error plus, error minus, syst plus and
syst minus should all be positive. If the last two arguments are omitted, the
default value 0 is used.

Chapter 3: Fitting a Model 12

CorrelatedGaussianIC

This represents the contribution from several observables with Gaussian errors
and a non-diagonal correlation matrix. The class can not be fully initialised in
the constructor. The constructor

CorrelatedGaussianIC(int n)

creates an “empty” input component for n observables. Note that n is the num-
ber of observables provided by the model (i.e. the same number that is passed
to the Fitter constructor) and not the number of observables contributing to
the input component. To initialise a CorrelatedGaussianIC object, you first
have to specify the contributing observables and their central values and errors
with the add() method and then set the elements of the correlation matrix with
the cor() method. Here is an example:

CorrelatedGaussianIC ic(MyModel::NOBS);

ic.add(MyModel::O_MYFIRSTOBS, 2.3, 0.4);

ic.add(MyModel::O_MYSECONDOBS, 5.6, 0.7);

ic.cor(MyModel::O_MYFIRSTOBS, MyModel::O_MYSECONDOBS, 0.23);

This means that the two observables associated with the integers MyModel::O_
MYFIRSTOBS and MyModel::O_MYSECONDOBS (see [MyModel example], page 7)
have measured values of 2.3 and 5.6, standard deviations of 0.4 and 0.7 and
a correlation of 0.23. Note that only off-diagonal elements of the correlation
matrix in one triangle have to be set. To add this input component to the input
function of a Fitter instance fitter, call

fitter.input_function().add(ic);

All the information of the ic object is copied by the InputFunction::add()

method and the lc object is no longer needed afterwards.

3.2 Non-linear Constraints

In some cases you may need to minimize the chi-square function under constraints of the
form gi(ξ) = ci where ξ are the parameters of your model, i is an index, gi are some
real-valued functions and ci constants. One possibility to implement such constraints is to
add penalty terms to the chi-square function which become large for gi(ξ) 6= ci. Of course
the chi-square function then looses its statistical interpretation, and one should remove the
penalty terms from the chi-square value when computing p-values and confidence intervals.

myFitter supports this approach to non-linear constraints by keeping the penalty terms
in the chi-square separate from the ordinary terms. To implement non-linear constraints
gi(ξ) = ci you first have to implement the functions gi as an observables in your Model

class. Then you add inputs for these observables to the input_function() member of your
Fitter object with the method

int InputFunction::add_constraint(const InputComponent&)

You can use any of the InputComponent classes discussed above. Usually GaussianIC

instances with central values ci small errors will do the job. Calls to Fitter::global_fit

or Fitter::local_fit (see Section 3.3 [Minimising the chi-square Function], page 13) will
then minimize the value of χ2 + fχ2

c, where χ
2 is the sum of all contributions added via

InputFunction::add, χ2
c is the sum of all contributions added via InputFunction::add_

constraint and f is the constraint penalty factor which can be accessed with the methods

Chapter 3: Fitting a Model 13

double InputFunction::constraint_penalty_factor()

void InputFunction::constraint_penalty_factor(double f)

Thus, by varying the constraint penalty factor you can change the weight of the constraint
penalties in the overall fit. The factor must be tuned on a case by case basis. If it is too
small the fit will violate the constraints in order to decrease the value of χ2. If it is too big
your fits will not converge because the curvature of the objective function is too large. The
default setting is 1.

Instead of changing the constraint penalty factor you can also change the errors of the
input components added via LikelihoodFunction::add_constraint. In this sense, the
constraint penalty factor is just a convenient way of scaling the contributions of all con-
staint penalties simultaneously. Note, however, that the constraint penalty value written to
Model::constraint_penalty by the functions Fitter::global_fit and Fitter::local_

fit (see Section 3.3 [Minimising the chi-square Function], page 13) is χ2
c , i.e. does not

include the constraint penalty factor.

To implement constraints of the form c1 < g(ξ) < c2 you can pass a GaussianIC instance
with non-zero systematic errors to InputFunction::add_constraint. If MyModel::O_G is
the index associated with the observable g, c1 and c2 the lower and upper bounds and dg
the small error you can do the following:

fitter.input_function().add_constraint(

GaussianIC(MyModel::O_G, dg, (c1+c2)/2, (c2-c1)/2));

Alternatively, you can define an observable h(ξ) in such a way that it is only non-zero when
g(ξ) < c1 or g(ξ) > c1 and add a Gaussian constraint on h with a central value of 0.

3.3 Minimising the chi-square Function

Once the input function of your Fitter object is properly initialised, you can fit a model
object model to some input data idata with the methods

int Fitter::local_fit(Model& model, const ObservableVector& idata)

int Fitter::global_fit(Model& model, const ObservableVector& idata)

These methods take the values in idata as measured values of the observables and then
minimise the input function. They return zero if the fit was successful and a non-zero
value otherwise. If the last argument is omitted, the default input values stored in the
Fitter::input_function() object are used. After a successful fit, the parameters of the
model object (as returned by the Model::parameter method) are the best-fit parameters,
the observables (as returned by the Model::observable method) are the values of the
observables at the best-fit point, the chi-square value (as returned by Model::chisquare())
is set to the minimal chi-square value and the constraint penalty value (as returned by
Model::constraint_penalty()) is the value of the constraint penalty at the best-fit point
(without the constraint penalty factor, see Section 3.2 [Non-linear Constraints], page 12).
In the notation of [arXiv:1207.1446v2], and for given input data x0 and parameters ξ, the
chi-square function is related to the input function D by

χ2(ξ) = D(~x(ξ), x0) − D(x0, x0) ,

where ~x(ξ) are the observables predicted by the model for the parameters ξ. The same rela-
tion holds for the constraint penalty χ2

c (see Section 3.2 [Non-linear Constraints], page 12).

http://arxiv.org/abs/1207.1446v2

Chapter 3: Fitting a Model 14

The difference between the two fitting methods is that local_fit uses the current parameter
values of the model object as starting point for the minimisation while global_fit looks
through the dictionary of the model object (see Section 3.4 [Finding the Right Starting
Point], page 15) to find the best starting point.

To only calculate the chi-square value for the current parameter values (without any
minimisation) you can use the method

int Fitter::calc(Model& model, const ObservableVector& cvals)

It sets model.chisquare() to the computed chi-square value, model.constraint_

penalty() to the computed constraint penalty value and returns zero if the calculation
was successful and a non-zero value otherwise. The values in cvals are used as experimental
inputs for the observables. If the cvals argument is omitted the default values in
input_function().central_values() are used. The Fitter class also provides methods
to compute the chi-square and constraint penalty values due to some subset of observables.
The corresponding methods are

int Fitter::calc_contrib(const IndexVector& iv, Model& model,

const ObservableVector& cvals)

int Fitter::calc_contrib(int i, Model& model,

const ObservableVector& cvals)

int Fitter::calc_contrib(int i1, int i2, Model& model,

const ObservableVector& cvals)

In the first prototype the observables whose contributions should be included in the com-
putation of the chi-square and the constraint penalty can be specified with an IndexVector

object containing the corresponding observable indices. If the contribution of only one
observable ist needed you can supply the index of that observable to the second proto-
type. The third prototype calculates the contributions of all observables with index be-
tween (and including) i1 and i2. Like the Fitter::calc method, the above methods set
model.chisquare() to the computed chi-square value, model.constraint_penalty() to
the computed constraint penalty value, use cvals as central values for the experimental ob-
servables or input_function().central_values() if the cvals argument is omitted and
return zero if the calculation was successful and a non-zero value otherwise. Note that,
if your input function contain a component which depends on several observables (like
CorrelatedGaussianIC components) myFitter has no way of separating the contributions
from these observables. In this case the full contribution of that component is included as
soon as at least one of these observables is requested in the call to Fitter::calc_contrib.

For the actual minimisations myFitter uses a custom implementation of the BFGS al-
gorithm. You can tune the parameters for this algorithm with several Fitter methods:

int minimizer_verbosity()

void minimizer_verbosity(int n)

These methods return or set the verbosity level for minimisations. The default
value is zero, in which case no information is displayed during a minimisation.
Values of 1 to 3 will print increasing amounts of information to std::cout.

double minimizer_line_search_precision()

void minimizer_line_search_precision(double p)

These methods return or set the precision for one-dimensional minimsations.
The default setting of 0.1 is usually sufficient.

Chapter 3: Fitting a Model 15

double minimizer_precision()

void minimizer_precision(double p)

These methods return or set the precision of the minimiser. If the norm of the
gradient of the chi-square function drops below minimizer_precision() the
minimisation is considered successful. Remember that internally all parameters
are normalised to their scale (see [Model::scale], page 3), so that derivatives
of the chi-square function with respect to the parameters are multiplied with
the scale of the corresponding parameter. Thus, unreasonably small values for
scales of the parameters can lead to a premature termination of the minimisa-
tion. The default setting is 0.001.

int minimizer_iterations()

void minimizer_iterations(int n)

These methods return or set the maximum number of iterations for a chi-
square minimisation. If the maximum number of iterations is exceeded, the
minimisation is aborted and the status GSL_EMAXITER (defined in the header
‘gsl/gsl_errno.h’) is returned. The default setting is 200.

bool minimizer_keep_hessian()

void minimizer_keep_hessian(bool b)

If this is set to true the BFGS estimate for the Hessian matrix from the previ-
ous minimisation is used as starting point for the next minimisation. A com-
mon application for this feature is minimisation with non-linear constraints
(see Section 3.2 [Non-linear Constraints], page 12). In this case convergence
problems can be dealt with by first doing a minimisation with a low constraint
penalty factor, then increasing the factor and re-starting the minimisation in
the state where it terminated. For the default setting of false the Hessian
matrix is set to the identity matrix at the start of each minimisation.

3.4 Finding the Right Starting Point

To successfully minimise a function one should start the iteration as close as possible to
the global minimum. The search for the best starting point is usually done by randomly
sampling the parameter space. In myFitter each Model object can store a dictionary of such
sample points (see Section 2.1 [The Model Base Class], page 3). To build this dictionary
the Model class provides the scan method for performing simple flat scans of the parameter
space. However, for particularly difficult objective functions with narrow valleys a flat scan
might not be enough to resolve all relevant features. For such cases the Fitter class allows
you to scan the parameter space adaptively. The adaptive scan works as follows: let Ω be the
parameter space volume to be scanned and let χ2(ξ) be the chi-square function (including
constraint penalties). Then myFitter uses VEGAS to compute the integral∫

Ω

dξ (χ2(ξ) + c)−a ,

where a and c are positive constants to be configured by the user. The value of this integral is
completely meaningless, but the adaptive property of the VEGAS algorithm will eventually
sample the regions with a small chi-square with a higher density. After giving VEGAS some
time to adapt one then starts filling the dictionary of the Model class with all the sample

Chapter 3: Fitting a Model 16

points tried by VEGAS. This automatically leads to a higher resolution in the interesting
regions with small chi-square values.

The adaptive scan can be done with the methods

void Fitter::adaptive_scan(Model& model,

const ObservableVector& cvals,

HepSource::Int64 nfirst,

HepSource::Int64 n,

int niter,

HepSource::Int64 nlast)

void Fitter::adaptive_scan(Model& model,

HepSource::Int64 nfirst,

HepSource::Int64 n,

int niter,

HepSource::Int64 nlast)

(The 64 bit integer type HepSource::Int64 is provided by the Dvegas package.) The
adaptation phase of the VEGAS integration consists of a first iteration with nfirst shots
and then niter iterations with n shots each. Then a final iteration is done with nlast
sample points. All the points tried in that last iteration are written to the dictionary of the
model argument. The chi-square function in the integrand is computed with the input_

function() member of the Fitter object, using the central values cvals for the observables
if provided and input_function().central_values() otherwise.

The constant c in the integrand can be configured with the methods

double Fitter::scans_chisquare_offset()

void Fitter::scans_chisquare_offset(double)

The default value is 1. The exponent a can be accessed with

double Fitter::scans_chisquare_power()

void Fitter::scans_chisquare_power(double)

The default value is also 1. Finally, the number of bins used for the VEGAS adaptation
can be set with

int Fitter::scans_nbins()

void Fitter::scans_nbins(int)

The default setting is 50.

Chapter 4: Calculating p-values 17

4 Calculating p-values

The main feature of the myFitter library is the numerical computation of p-values in like-
lihood ratio tests of nested and non-nested models. As discussed in [arXiv:1207.1446v2],
p-values in likelihood ratio tests have to be computed numerically in cases where Wilks’
theorem is not applicable. Such cases include bounded parameters and models which are
not nested, meaning that one model can not be obtained from the other by fixing some of
its parameters.

In a likelihood ratio test one compares the performance of two models A and B in
desribing observed data. The test is performed under the null hypothesis that one of the
models, say, model B, is realised with certain parameters (usually its best-fit parameters for
themeasured data x0. Then one considers a large ensemble of “toy measurements” which are
randomly distributed about their true values (as predicted by model B) according to their
experimental errors and uses the difference Δχ2 = χ2

B−χ2
A of the minimal chi-square values

of the two models as test statistic. The p-value is the probability that a toy measurement
leads to a Δχ2 value which is bigger (i.e. more in favour of model A) than the Δχ2 value
obtained from the measured data x0.

4.1 Methods for Computing p-values

The numerical computation of p-values is done by the Fitter class via the methods

double calc_nested_lrt_pvalue(Model& fullmodel,

Model& constrainedmodel)

double calc_lrt_pvalue(Model& model1, Model& model2,

int argc=0, char** argv=0)

Both methods return the computed p-value. More information about the last p-value com-
putation can be obtained with the methods

double Fitter::pvalue()

double Fitter::pvalue_error()

bool Fitter::reached_precision_goal()

HepSource::Int64 Fitter::number_of_shots()

double Fitter::failed_shot_ratio()

The pvalue method simply returns the result of the last p-value computation. Since the
p-value is calculated by numerical Monte Carlo integration it has a statistical error, which
is returned by the pvalue_error method. The method reached_precision_goal returns
true if the desired precision goal (as set by dvegas_precision, see Section 4.2 [Options
for p-value Computations], page 18) has been reached in the last p-value integration and
false otherwise. The total number of shots used to obtain the result is returned by the
number_of_shots method. The return type is a 64-bit integer and defined by the Dvegas

package. Each shot requires two minimisations, and a small fraction of these minimisations
will usually fail. The fraction of “failed shots” in the last p-value computation is returned
by the failed_shot_ratio method. If you use parallelised integration (see Section 4.3
[Parallel Computation], page 20) the counting of failed shots does not work and failed_

shot_ratio will return −1.
The calc_nested_lrt_pvalue method is used for comparing nested models, and con-

strainedmodel must be a constrained version of fullmodel. If you defined copy constructors

http://arxiv.org/abs/1207.1446v2

Chapter 4: Calculating p-values 18

and virtual assignment operators for your model classes (see Section 2.2 [Writing your own
Model Class], page 6) you will probably want to construct constrainedmodel like this:

MyModel constrainedmodel = fullmodel;

constrainedmodel.fix(MyModel::P_MYSECONDPAR);

constrainedmodel.fix(MyModel::P_MYLASTPAR);

...

The calc_nested_lrt_pvalue method checks if the two models have the same number
of parameters (as returned by Model::nparameters()) and if all the parameters fixed in
fullmodel are also fixed in constrainedmodel, but otherwise it is your responsibility to ensure
that the two models are indeed nested. The calc_nested_lrt_pvaluemethod the performs
a likelihood ratio test, using the model constrainedmodel with its current parameters as
the null hypothesis. The difference

constrainedmodel.chisquare() - fullmodel.chisquare()

is taken as the Δχ2 value obtained from the measured data. So, usually, you will want to fit
fullmodel and constrainedmodel to your data (see Chapter 3 [Fitting a Model], page 10)
before passing them to calc_nested_lrt_pvalue.

The method

double calc_lrt_pvalue(Model& model1, Model& model2,

int argc=0, char** argv=0)

is used for comparing unrelated models. Here, the only limitation is that both models
must provide the same number of observables. It is your responsibility to ensure that the
integer values used to identify the observables are the same in both models. The order of
the first two arguments is not important in this case: the model with the bigger chi-square
value (as returned by Model::chisquare()) and its current parameter values is used as null
hypothesis. As before, the difference of the two chisquare() members is assumed to be the
Δχ2 value obtained from the measured data. The last two arguments of calc_lrt_pvalue
are for parallelising the p-value computation. They are discussed in Section 4.3 [Parallel
Computation], page 20. If they are omitted, no parallelisation is used.

4.2 Options for p-value Computations

The methods calc_nested_lrt_pvalue and calc_lrt_pvalue use the Dvegas library to
compute p-values by numerical Monte Carlo integration. The details of the numerical
integration and other operations related to the computation of p-values can be configured
with the following Fitter methods:

double inner_region_fraction()

void inner_region_fraction(double f)

These methods return or set the initial fraction of sample points that are
thrown in the “inner region” of the integral, where no non-zero contributions
are expected (within some approximation). For details see the discussion in
[arXiv:1207.1446v2]. The default setting is 0.1.

http://arxiv.org/abs/1207.1446v2

Chapter 4: Calculating p-values 19

double inner_region_power()

void inner_region_power(double alpha)

These methods return or set the exponent α appearing in the probability
density function for the inner region. For details see the discussion in
[arXiv:1207.1446v2]. The default setting is 1.

int dvegas_verbosity()

void dvegas_verbosity(int n)

These methods return or set the verbosity level of the numerical integration. If
set to 0, no output is produced. Values of 1 to 3 print increasing amounts of
information on std::cout. The default setting is 0.

int dvegas_nbins()

void dvegas_nbins(int n)

These methods return or set the number of bins used in the VEGAS adaptation.
More information can be found in the Dvegas documentation. The default
setting is 50.

int dvegas_nfirstshots()

void dvegas_nfirstshots(int n)

These methods return or set the number of sample points (shots) for the first
iteration of the VEGAS algorithm. The default setting is 1000.

int dvegas_nshots()

void dvegas_nshots(int n)

These methods return or set the number of sample points (shots) for all subse-
quent iterations of the VEGAS algorithm. The default setting is 500.

int dvegas_niterations()

void dvegas_niterations(int n)

These methods return or set the maximum number of VEGAS iterations which
are performed before terminating the calculation and returning the result. The
default setting is 20.

double dvegas_precision()

void dvegas_precision(double p)

These methods return or set the desired relative precision of the p-value com-
putation. If this relative precision is reached the integration is terminated and
the result is returned. The default setting is 0.01.

double orthogonalization_tolerance()

void orthogonalization_tolerance(double t)

To construct the model hyperplane (see [arXiv:1207.1446v2]) from the deriva-
tives of the observables with respect to the parameters, the Fitter class uses
the Gram Schmidt orthogonalisation algorithm. These methods return or set
the tolerance for the orthogonalisation, i.e. the minimum length of a vector for
which it is considered unequal to zero. Remeber that, internally, all deriva-
tives are multiplied with the scale of the corresponding parameter. The default
setting is 10−6.

http://arxiv.org/abs/1207.1446v2
http://dvegas.hepforge.org
http://arxiv.org/abs/1207.1446v2

Chapter 4: Calculating p-values 20

4.3 Parallel Computation

If you installed the Dvegas library with parallelisation features enabled, you can use the
last two arguments of calc_lrt_pvalue to parallelise your p-value computation. Details
on the parallelisation Monte Carlo integrations can be found in the Dvegas documentation.
Here we just discuss the simplest case.

The arguments argc and argv are the ones you would pass to the HepSource::OmniComp
constructor if you were using Dvegas directly. They should (usually) contain the command
line arguments passed to your program and thus be identical to the ones system passes to
your main function. Let’s say you have written some program ‘myprog’ which calculates the
p-value (but too slowly) and several computers with access to a network directory workdir.
On each extra computer available to you, you start a worker processes with

cd workdir

myprog -w

These processes will dump some information about themselves in a common file
‘myprog.workers’ in ‘workdir’ and then wait for the “master” process to show up. Start
that one on the last computer with

cd workdir

myprog

The master process should then connect to the workers and distribute the numerical in-
tegration among the workers. It will also do some work itself. Needless to say, if your
computers have more than one core, it makes sense to start more than one worker process
on each computer.

http://dvegas.hepforge.org

Appendix A: GNU Free Documentation License 21

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: GNU Free Documentation License 22

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 23

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: GNU Free Documentation License 24

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 25

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix A: GNU Free Documentation License 26

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 27

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Getting Started
	Requirements
	Installation
	Compiling the Example

	Implementing Models
	The Model Base Class
	Writing your own Model Class

	Fitting a Model
	Specifying Experimental Inputs
	Non-linear Constraints
	Minimising the chi-square Function
	Finding the Right Starting Point

	Calculating p-values
	Methods for Computing p-values
	Options for p-value Computations
	Parallel Computation

	GNU Free Documentation License

